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Abstract 

Laves phases nominally occur at the AB2 stoichiometry but can exhibit a range of solubility involving non-stoichiometric 
compositions in binary alloys. The solubility trends in the reported binary C14, C15 and C36 structures have been analyzed 
in terms of the atom size requirements that are known to stabilize the Laves phases. For example, Laves phases exist at 
metallic diameter ratios (DA/DB) between ~1.05 and 1.68 with the ideal diameter ratio existing at ~1.225. Although less 
than 25% of the Laves phases within the DA/DB ratios of 1.05-1.68 have defined ranges of homogeneity, the frequency of 
the number of intermetallic phases exhibiting any solubility range is increased by a factor of approximately two to three within 
specific DA/DB ratios of 1.12-1.26 (C14 and C36 phases) and 1.1-1.35 (C15 phases). The upper and lower bounds for the 
C15 structures can be physically defined as the limits at which the A-B atom distance contractions are greater than the A - A  
atom distance and B-B atom distance contractions, respectively. For all three main polytypes the occurrence of solubility 
corresponds to a lattice-adjusted contraction between 0-15%. The contraction size rule is a geometric argument based upon 
the contraction of the atoms forming the intermetallic structure and appears to be an important relationship in describing 
ranges of homogeneity in Laves phases. The relationships developed are applied to interpret potential defect mechanisms and 
alloying behavior in binary and ternary Laves phases. In addition, extended ternary solubility ranges normal to a pseudobinary 
direction can be predicted with suitable solute additions having a metallic diameter between that of the A and B atoms. 
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I .  Introduct ion 

1.1. Occurrence and stability o f  Laves phases 

Among the intermetallic phases, the most abundant 
structural types are the Laves phases (C14, C36, and 
C15) [1]. The ordered hexagonal C14 Laves phase 
develops in approximately 131 defined binary phases 
and 263 defined ternary phases. Similarly, the ordered 
face-centered cubic C15 Laves phase forms in ap- 
proximately 219 binary and 272 ternary phases, while 
17 binary and 14 ternary phases exist with the ordered 
hexagonal C36 phase structure [2]. Therefore,  consid- 
ering individual polytypes, over 900 binary and ternary 
Laves phases have been defined, including over 360 
binary Laves phases. The abundance of Laves phase 
structures has been attributed to geometric principles 
for the ordered arrangement  of atoms on lattice sites 
[1]. For example, intermetallic phases have the tendency 
to form with a close packing of atoms, high atomic 
symmetry, and a metallic nature of  bonding (i.e. homo- 
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geneous bonding), and Laves phases satisfy the geo- 
metric conditions more efficiently than other inter- 
metallic phase structure types [1]. 

All Laves crystal structure types can be constructed 
from six four-layer fundamental  stacking schemes in- 
volving close-packed planes in the close-packed direction 
of the structure [3]. Geometrically, the structures are 
slight modifications of each other, with the only dif- 
ference between Laves polytypes being the periodicity 
of the stacking schemes (similar to disordered fcc and 
hcp crystal structures). The space filling and coordi- 
nation are unchanged between the structures [4], and 
the packing efficiency is 0.72. The crystal structure and 
the schematic diagram of the (110) plane in the C15 
structure given in Fig. 1 illustrates the position of the 
A and B atoms in a Laves phase [5]. With spherical 
atoms in a perfect crystal, the atoms in the AB2 Laves 
phases exhibits the ideal diameter  ratio dA/dB= 
~/3/~/2= 1.225, where d is the diameter  of the metal  
atom at the stoichiometric composition of the inter- 
metallic phase. 
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(a) 

a_./9 

(b) 

Fig. 1. (a) Schematic diagram of the C15 prototype structure (MgCu2). 
The A atoms are dark and the B atoms are light. (b) Schematic 
diagram of  the (110) plane in the C15 crystal structure illustrating 
the distances of the A atoms (open large circles) and B atoms 
(hatched small circles). 

Since Laves phases are predominantly metallic in 
bonding nature and largely described by geometric 
space-filling principles, the metallic atom diameter (with 
a coordination number of 12), D, of the atoms forming 
the phase has been used often to evaluate the relevance 
of atomic size factors on the occurrence and relative 
stability of the Laves phases [1,6,7]: For example, the 
Laves phases occur between the metallic diameter ratios 
(DA/DB) of ~ 1.05 and 1.68 [6]. An atom with a metallic 
diameter, D, will have a different diameter, d, in the 
Laves phase. The atom size difference between the 
metallic and intermetallic phases ( D - d )  yields an ap- 
parent contraction (positive value) or expansion (neg- 
ative value) of an atom within the Laves phase. The 
atoms forming the phase tend to adjust in size to 
accommodate the ideal space filling (d^/dB ~ 1.225) in 
the ordered Laves phase lattice [6], and as a result, 
the occurrence of the Laves phases is more broadly 
related to the ability of the A and B atoms to expand 
or contract so that the ideal ratio is approached. In 
fact, space-filling models expressed in terms of the 
compression of A and B atoms and their respective 

atomic distances (i.e. A-B, A-A, and B-B) have proven 
to be effective in evaluating the size and volume changes 
that occur when atoms form a Laves phase [8,9]. The 
size and volume changes that occur upon Laves phase 
formation can be further quantified by analyzing specific 
element groups in the periodic table (e.g. rare earth 
elements, alkali metals, etc.), and as a result, the position 
of the atoms in the periodic table has an influence on 
the occurrence of Laves phases [7,9,10]. 

The relative stability of the individual Laves phase 
polytypes (i.e. C14 vs. C15 vs. C36) also is related to 
the atomic size differences of the atoms forming the 
phase [6]. The hexagonal polytypes are more abundant 
where the atom contractions are minimal (i.e. DA/DB 
closer to 1.225), and the C15 polytypes are more frequent 
with atom size ratios above 1.225. However, distinct 
trends in the stabilization of the polytypes occur with 
changing electron concentrations. In fact, a recent study 
[11] has pointed out that the effectiveness of a geo- 
metrical interpretation on the relative stability between 
Laves phase polytypes (and other structures) is ques- 
tionable in terms of being a convenient methodology. 
Alternatively, the study proposes that the analysis of 
local and global structural effects owing to variations 
in electron concentration is a more suitable approach 
to define relative stability. Similar observations have 
been documented in the literature. For example, in 
Mg-based Laves phases, the C15 phase is stabilized at 
electron concentrations (e/a) below 1.8, and the C14 
phase is stabilized at higher electron concentrations 
[12]. In transition-element Laves phases, the C15 phase 
has been shown to become stable at very large electron 
concentrations (e/a >2.3) [13] and the C14 phase is 
stabilized at very low electron concentrations (e/a < 0.73) 
[14]. One of the most interesting effects of electron 
concentration on stability is found with s o m e  A B  2 Laves 
phases where B=Ni  or Co [15]. Many A elements 
(A = Ti, V, Nb, Ta, Mo, W) do not form a Laves phase 
with nickel and cobalt, even though the DA/DB ratios 
are favorable for Laves phase formation. However, by 
substituting silicon on the B lattice sites, ternary C14 
compounds can be produced. This phenomenon has 
been attributed to the binary phases having electron 
concentrations which are too large. Ternary silicon 
additions apparently decrease the effective electron 
concentration, stabilizing a C14 phase [15]. 

Although Laves phases have been described in terms 
of geometric principles [1], the relative stability of the 
respective polytypes are certainly functions of electronic 
factors as well. Moreover, other factors have been 
related to the development of Laves phases. As ex- 
amples, the heats of formation of Laves phases have 
been correlated to DA/DB ratios [16]; electronegativity 
differences have been used to standardize and fit atom 
contractions as a function of DA/DB ratios [17]; and 
the crystal structure relationship between the unalloyed 
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atoms and alloyed phases have been proposed to affect 
the energetics of Laves phase formation [17]. However, 
these factors are typically correlated to geometric size 
ratios, stressing the usefulness of geometric require- 
ments for the interpretation of Laves phase behavior, 
particularly in the general abundance of the intermetallic 
phase. 

1.2. Solubility in Laves phases 

Although the occurrence and relative stabilities of 
Laves phases have been documented, little information 
is available on the Laves phase field width and its 
correlation to the lattice structure in binary phases. 
The extent of solubility ranges can influence the char- 
acteristics and applications of intermetallics [18]. In- 
deed, the role of ternary solubility in Laves phases has 
demonstrated potential optimizations in the mechanical 
properties of Laves phases [19-21]. Owing to the specific 
arrangement of atoms, deformation involving simple 
planar slip is unlikely and a "synchroshear" or "zonal- 
slip" mechanism involving cooperative movement be- 
tween planes of atoms may be required and can limit 
the ductility of these materials [19,20]. However, sol- 
ubility additions on A and/or B lattice sites in the ABe 
Laves phase may be operative in permitting enhanced 
deformability [21,22]. Moreover, a monolithic inter- 
metallic with some phase field width is more readily 
processed as compared with a stoichiometric phase. In 
the following analysis the solubility behavior in Laves 
phases is explored as a function of the geometric 
requirements (i.e. atom sizes and atom contractions) 
in the lattice to identify trends that could provide insight 
into defining the range of homogeneity and possible 
defect structures. Although other criteria may influence 
solubility ranges in Laves phases, the abundance of 
Laves phases have been described in terms of geometric 
principles of space filling. Therefore, the geometric 
space filling requirements of a spherical atom (i.e., 
geometric factors) involved in the formation of the 
Laves phases should provide distinct guidelines in judg- 
ing the extent of solubility. 

2. Analysis 

Consistent with the geometric analyses of other studies 
on the stability and occurrence of Laves phases, the 
metallic atom diameters with a coordination number 
of 12 [23] are used to evaluate trends in the phase 
field width of binary Laves phases. The phase field 
width (i.e. solubility or homogeneity range) is defined 
to be the maximum total range of solubility (including 
both sides of stoichiometry) occurring in the Laves 
phase at any given temperature in the equilibrium 
diagram. The most recent compilation of binary phase 

diagrams [24] permitted determination of the currently 
known solubility ranges in the respective phases. The 
solubility values were examined as a function of the 
elemental atomic diameter ratios as well as the con- 
traction of the lattices as determined from the lattice 
parameters [25]. For the 360 known binary Laves phases, 
only 25% of the Laves phases have any defined solubility, 
and less than 20% had a solubility range greater than 
2 at.%. For the intent of this study, solubility will be 
defined as any measurable range of homogeneity (at 
any temperature) observed in the Laves phase. 

2.1. C14 phases 

Of the 131 known binary C14 phases, only ~22% 
of the phases have any known range of solubility. The 
solubilities of the C14 phases are plotted vs. the atomic 
diameter ratio in Fig. 2. A clear trend is indicated in 
the figure, with most examples of solubility occurring 
in phases that have diameter ratios below ~ 1.26. Above 
DA/DB = 1.29 only one phase out of 35 has any reported 
solubility, and that phase, GdMn2, contains a lanthanide 
metal and has an uncertain solubility of 1 at.% [24]. 
Lanthanide metals are commonly observed to exhibit 
unique properties due to their electronic configuration 
in the electron orbitals, particularly the f orbitals. 
Indeed, the lanthanide contraction, which causes atyp- 
ical trends in the atomic radii of lanthanide metals in 
the periodic table, is but one characteristic of these 
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Fig. 2. P lo t  of the  a tomic  solubi l i ty  r ange  as a func t ion  of  the  meta l l i c  
a tom d i a m e t e r  ra t io  in the  C14 crystal  s t ructures .  T h e  m i d d l e  da shed  
l ine is the ideal  d i a m e t e r  ra t io  of ~ 1.225. T h e  u p p e r  and  lower  
da shed  d i a m e t e r  ra t io  bounds  ind ica te  the app rox ima te  va lues  wi th in  
which a solubi l i ty  range  is observed .  
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metals. In fact, it has been proposed that the lanthanide 
metals can contract to a rather large extent in Laves 
phases [7]. 

Between D^/DB = 1.12 and 1.26, ~53% of the phases 
exhibit solubility. Clearly, the occurrence of solubility 
is enhanced as the atoms are closer in size and near 
the ideal diameter ratio of 1.225, and the observed 
trend in the diameter ratios is consistent with the 
required conditions of optimized space filling. Appar- 
ently, introduction of constitutional defects on lattice 
sites generally is more probable within the diameter 
ratios of 1.12 and 1.26 for the C14 Laves structure. 

2.2. C36 phases 

As observed with the C14 Laves phase, the less 
common C36 Laves phase does not typically exhibit 
solubility above an atomic diameter ratio of 1.26 (Fig. 
3). Below D^/DB --- 1.26 and above D^/DB -- 1.12, 77% 
of the structures exhibit solubility. 

In the intermetallic phases with the C36 structure, 
only two phases, NbZn2 and MgNi2, do not exist as 
binary polytypes. These two phases are unusual since 
studies have suggested that the C36 phase is an in- 
termediate structure in the arrangement sequence of 
atoms from the C14 to C15 structures [1]. Indeed, TEM 
studies have offered proof of the structural intermediacy 
of the C36 phase between polytypes in the TiCr2 
intermetallic phase [26]. Moreover, the ternary alloying 

of continuous Laves solutions of MgX2 phases indicates 
that the C36 phase is readily destabilized to the C15 
or the C14 structures with minimal negative or positive 
changes, respectively, in electron concentrations [12]. 

2.3. C15 phases 

For the 219 identified binary C15 Laves phases, ~ 27% 
have defined solubility. As demonstrated with the hex- 
agonal Laves phases, solubility dearly increases as the 
atomic diameter ratios decrease (Fig. 4), and 44% of 
the phases exhibit solubility between the lower and 
upper D^/DB ratio bounds of 1.1 and 1.35. Above D^/  
DB = 1.35, 8 out of 80 phases exhibit solubility (albeit 
uncertain in many cases), and 7 of these 8 phases 
contain metals from the lanthanide series. Moreover, 
above D^/DB = 1.30, over half of the 26 phases with a 
range of homogeneity exhibit significant solubility only 
on the B-rich side of the AB2 stoichiometric phase. In 
other words, the lattice appears to be able to accom- 
modate the smaller B atoms on the large A sites, but 
not vice versa. Below the atomic diameter ratio of 1.35 
and above D^/DB = 1.1, 52 of the 123 phases exhibit 
solubility, and therefore over 85% of the phases with 
solubility have diameter ratios within this range. 
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Fig. 3. Plot of the atomic solubility range as a function of the metallic 
atom diameter ratio in the C36 crystal structures. The middle dashed 
line is the ideal diameter ratio of ~ 1.225. The upper and lower 
dashed diameter ratio bounds indicate the approximate values within 
which a solubility range is observed. 

DA/D B 
Fig. 4. Plot of the atomic solubility range as a function of the metallic 
atom diameter ratio in the C15 crystal structures. The middle dashed 
line is the ideal diameter ratio of ~ 1.225. The upper and lower 
dashed diameter ratio bounds indicate the approximate values within 
which a solubility range is observed. 
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3. Discussion 

3.1. C14 phase 

A higher range of solubility is observed for the C14 
Laves phases with DA/DB ratios between 1.12 and 1.26. 
The enhanced solubility occurs as the atoms are closer 
in size to the ideal ratio of 1.225. Therefore, the degree 
of atom contraction from the metallic diameters to the 
diameters of the atoms in the phase must influence 
the occurrence of solubility. 

The C14 crystal structure is illustrated in Fig. 5, and 
the different atom distances are labeled in this figure 
and defined in the Appendix. With the bond distances 
defined, the average intermetallic atom size differences 

(o) 

dAB1 

c 

(b) ;aZ 
Fig. 5. (a) Schematic diagram of the basic rhombic unit in the 
hexagonal C14 crystal structure. The  A atoms are dark and the B 
atoms are light. (b) Schematic diagram of a (110) plane of the 
rhombic unit  illustrating the atom distance of the A atoms (open 
large circles) and B atoms (hatched small circles). The  atom distances 
not shown are: dBt, the distance between the triangularly coordinated 
B atoms in (a); and dam, the distance between the labeled A and 
B atoms in (a). 

with respect to the metallic diameters can be presented 
in a fashion similar to that shown by Laves [1], only 
exclusively for the C14 phase (Fig. 6). The average A 
contraction (i.e. DA-da )  is demonstrated in Fig. 6(a), 
whereas Figs. 6(b) and 6(c) illustrate the average B 
and A-B contractions, respectively. As Laves had noted 
for the limited number of all Laves phases (C14, C15 
and C36) defined at the time of his analysis, the linear 
regression lines for the A and B contractions intersect 
at the ideal ratio of ~ 1.225. The A-B contractions 
intersect the A and B contractions at DA/DB ratios of 
1.08 and 1.35, respectively. Although the regression 
lines were obtained from average contractions of the 
two A distances, two B distances, and three A-B 
distances, respectively, the intersections were altered 
less than 2% with the consideration of the individual 
distances (i.e. dal vs. dB1, dalvS, dBz, dal vs. dAB1, dA2 
vs. dBa, etc.). 

Since the degree of atom contractions influences the 
extent of solubility in the C14 Laves phases, the relative 
contraction (with respect to the metallic atom size) of 
the A, B, and A-B distances at the stoichiometric 
composition can be used to interpret the extent of the 
relative atom size change observed in the phases ex- 
hibiting ranges of homogeneity. Figs. 7(a)-7(d) illustrate 
the average percent contraction of the A atoms, B 
atoms, A-B distance and an adjusted lattice term plotted 
respectively vs. solubility. The average percent con- 
traction of the A atoms (i.e. SA=IOO(DA--dA)/DA) 
illustrates that the most extensive solubility occurs in 
those phases with minimal contractions centered within 
approximately + 5% of 0% contraction (Fig. 7(a)). The 
solubility range of the C14 phases with respect to the 
average percent contractions of the B atoms (i.e. 
SB=IOO(DB-d~)/DB) demonstrates a trend towards 
solubility in phases with contractions between - 3 %  
and 3% (Fig. 7(b)). Solubility as a function of the A-B 
contractions (i.e. SAB = IO0[((DA+DB)/2) --dAB]/ 
(DA+DB)/2) reflects a trend in observed ranges of 
homogeneity in phases with strictly negative A-B con- 
tractions (i.e. expansions) between 0% and - 6 %  (Fig. 
7(c)). Therefore, C14 phases exhibiting a range of 
solubility display A and B atom contractions centered 
narrowly around 0%, with the A contractions being 
slightly broader. In addition, the solubility ranges are 
observed with only A-B expansions. As a means to 
combine and interpret the contractions on a scale related 
to the unit cell, a lattice-adjusted contraction 
(S~at = SA + 2SB for the AB2 phase) can be used (Fig. 
7(d)). The C14 Laves phases typically have a range of 
solubility when this lattice contraction is within ~ 0% 
to 15%. At this point, a comparison of size factors 
affecting solubility in the metallic Laves intermetallic 
phase to metallic solid solutions can be made. 
Hume-Rothery size factor rules on solubility limits in 
disordered metallic solid solutions have been defined 
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Fig. 6. (a) Contractions of the A - A  distances in forming the C14 crystal structures from the metallic elements. (b) Contractions of the B-B 
distances in forming the C14 crystal structure from the metallic elements. The lines indicate regressions of the A - A  distance contractions 
and B--B distance contractions. (c) Contractions of  the A - B  distances in forming the C14 crystal structures from the metallic elements. The 
regression lines (solid) of the A-A distances, B--B distances, and A-B distances are indicated. The vertical dashed lines demark the DA/DB 
ratios at which the contraction regression lines intersect. 

for atomic size differences of less than ,-, 15% [27]. 
The relationships developed in the current analysis for 
the Laves phase incorporates the difference in atom 
distan~s between the metallic and intermetallic so- 
lutions and accounts for the atom ratio in the lattice. 
The Hurne-Rothery rule recognizes only the size dif- 
ference between two metallic atoms. In contrast, the 
lattice-adjusted contraction size rule reflects a change 
in atom size in different structures which could originate 
as a result of electronic structures as well as strain 
energy. 

Owing to the limited number of the other hexagonal 
Laves phase polytype (C36), a meaningful individual 
analysis for this phase cannot be performed. However, 

the C36 phase solubility trends appear to exist within 
the diameter ratio limits defined for the C14 phase 
when the data is overlaid onto the C14 plots. 

3.2. C15 phase 

An increase in solubility was observed for the C15 
phases between the D^/DB ratios of 1.1 and 1.35. The 
distances between the atoms in the C15 structure type 
are labeled in Fig. 1 and defined in the Appendix. The 
differences in the C15 phase atom separation distance 
with respect to the elemental diameters are illustrated 
for the C15 phases in Figs. 8(a)-8(c). The results are 
essentially identical for the intersection of the C15 
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Laves phase distance contractions as compared with 
the C14 Laves phases (Fig. 6), only there are more 
examples to document the contraction. The linear 
regression of A and B contraction lines cross at the 
ideal DA/D B ratio of ~ 1.225. 

The linear regression lines through the A-B con- 
tractions cross the A contraction line at ~ 1.1 and the 
B contraction line at ~ 1.35. Comparing these results 
with Fig. 3, the solubility of most of the C15 Laves 
phases occurs in this range. The few phases with 
solubility which fall outside of this zone again involve 
lanthanide elements. Therefore, in the C15 phases, the 
limits of phases exhibiting solubility occur at the in- 
tersection of the A-B contractions with A-A and B--B 
contractions. 

The relative contractions of the individual atom sizes 
and distance in the C15 phases exhibiting a solubility 

range are broader and behave differently to those for 
the C14 phases. The relative atom contractions for the 
C15 phases and the C14 phases are summarized for 
comparison in Table 1. Enhanced solubility is observed 
when the C15 phase A atom contractions are centered 
about 0%, however, the range of observed solubility 
incorporates a relative A contraction of ~ 12% to - 8% 
(Fig. 9(a)). This range of A contractions is approximately 
twice of that found with the C14 phases. Again, C15 
phases with a solubility range outside these limits involve 
lanthanides. The C15 phases with solubility occur with 
B contractions between 0 and 5% (Fig. 9(b)), whereas 
the B contractions for the C14 phase were centered 
around 0% (+ 3%), and include negative contractions. 
The C15 phases with solubility generally exist with 3% 
to - 7 %  contractions of the A-B distance (Fig. 9(c)), 
whereas the C14 phase A-B distance contractions gen- 
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Fig. 8. (a) Contractions of the A - A  distances in forming the C15 crystal structures from the metallic elements. (b) Contractions of  the B-B 
distances in forming the C15 crystal structure from the metallic elements. The lines indicate regressions of  the A - A  distance contractions 
and B-B distance contractions. (c) Contractions of  the A - B  distances in forming the C15 crystal structures from the metallic elements. The 
regression lines (solid) of  the A - A  distances, B--B distances, and A - B  distances are indicated. The vertical dashed lines demark the DA/De 
ratios at which the contraction regression lines intersect. 

Table 1 
Ranges of  the relative atomic distance contraction for the C15 and C14 Laves phases exh~iting solubility 

Crystal structure S^ SB SAB Sl,t 

C14 - 5 %  to 5% - 3 %  to 3% - 6 %  to 0% 0% to 15% 
C15 - 8 %  to 12% 0% to 5% - 7 %  to 3% 0% to 15% 

S^ = 100(D^ - a^)ID^; Sn - 100(DB-- d,O/l~; S AB - I O0(D ̂ B -- dAB)/D ̂ s; S],, = S^  + 2SB. 

erally were not positive (0% to --6%). Therefore, the 
C15 Laves phases with observed ranges of solubility 
tend to exhibit greater atom distmace contractions than 
the C14 phases with defined solubility ranges. The 
extents of negative and positive contractions also are 
different. However, the C15 Laves phases with observed 

ranges of solubility represent an adjusted lattice con- 
traction range of 0-15% for binary Laves phase struc- 
tures (Fig. 9(d)). Despite the differences in the relative 
atom size contractions between the C14 and C15 Laves 
phases, the polytypes can be normalized to exhibit 
solubility within identical size rules (Sl,t) of 0-15%. 
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d i s t a n c e ;  a n d  ( d )  o v e r a l l  l a t t i c e .  T h e  v e r t i c a l  d a s h e d  l i n e s  i n d i c a t e  t h e  DA/DB r a t i o  b o u n d s  i n  w h i c h  c o m p o u n d s  w i t h  s o l u b i l i t y  e x i s t .  

3.3. Consequences of atom size limits on solubility 
ranges 

3.3.1. Defect behavior 
In systems with solubility, an analysis of solubility 

range vs. DA/DB reveals a direct correlation between 
the atomic size and the phase field width. Generally, 
solubility occurs between diameter ratios of 1.12 and 
1.26 (C14 and C36), and 1.1 and 1.35 (C15). Within 
this range, the atoms are close enough in size to 
apparently accommodate constitutional defects. With 
DA/DB ratios greater than the ideal ratio, solubility on 
the B-rich side of stoichiometry is more pronounced 
and can be explained in terms of geometric require- 
ments. For example, substitution of the larger A atoms 
on the B sites should be more difficult in the geo- 
metrically restrictive lattice as compared with the sub- 
stitution of the smaller B atoms on A sites. Therefore,  
above the ideal DA/DB ratios the geometric substitution 

only can occur with the smaller B atoms filling the A 
sites. Accordingly, over half of the 26 C15 phases 
exhibiting a solubility range with DA/DB ratios over 1.3 
have solubility only on the B-rich side of the AB2 
stoichiometry. 

Based upon geometric space-filling arguments, anti- 
site substitution appears to be a likely defect mechanism 
for Laves phases on the B-rich side of stoichiometry. 
Analyses of the presence of substitutional B atoms on 
A lattice sites has been suggested in the C15 phases, 
ZrFe2 (DA/DB=l.26) [28] and NbCo2 (DA/DB = 1.17) 
[29] and NbCr2 (DA/DB=I.15) [30]. Moreover, the 
metallic diameter ratios could influence the extent of 
solubility in metastable solubility extensions during rapid 
solidification processing. For example, YA12 (DA/ 
DB = 1.27) exists as a stoichiometric phase under equi- 
librium conditions, but with rapid solidification pro- 
cessing, an extended metastable range of solubility has 
been promoted on the Al-rich side of stoichiometry 
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[31]. Limited extended solubility could also be obtained 
on the Y-rich side of stoichiometry. The defect mech- 
anism was suggested to consist of anti-site substitution 
of A1 on Y lattice sites on the Al-rich side of stoi- 
chiometry. 

On the A-rich side of stoichiometry, the specific 
defect mechanism is not as well defined. Based upon 
the lattice parameter behavior as a function of com- 
position in the C15 NbCr2 phase (DA/DB = 1.15), the 
occurrence of constitutional defects involving vacancies 
has been speculated on the Nb-rich side of stoichiometry 
[30]. Similarly, for the C15 YAI2 phase (DA/DB = 1.27) 
the occurrence of A1 vacancies was suggested to occur 
as a constitutional defect on the Y-rich side of stoi- 
chiometry [31]. Because of the geometric limitation in 
size for the A atoms existing as anti-site substitutions 
on B atom sites, B vacancies could be an appropriate 
constitutional defect. However, the defect mechanisms 
have not been defined specifically in the NbCr2 and 
YAI2 phases, and in fact, the reported C15 phase defect 
mechanisms on any A-rich side of stoichiometry are 
limited. One study has experimentally attempted to 
define the defect mechanism on both sides of stoi- 
chiometry, and anti-site substitution occurring on both 
sides of stoichiometry for the C15 phase, ZrCr2 (DA/ 
DB = 1.25), was reported [32]. The size discrepancy of 
substituting a large Zr atom on a Cr lattice site ap- 
parently is accommodated in this intermetallic phase. 
Similarly, anti-site substitution on both sides of stoi- 
chiometry has been proposed for some C14 phases: 
TiFe2 (DA/DB = 1.14) [28,33] and NbFe2 (DA/DB---- 1.16) 
[34]. TiFe2 and NbFe2 have low diameter ratios, and 
since the metallic atoms are close in size, anti-site 
occupancy is physically realistic. Therefore, defect mech- 
anisms on the A-rich side of stoichiometry may be 
sensitive to the role of atomic sizes in the Laves phase 
polytypes, but certainly further research is required to 
more completely identify the appropriate defect mech- 
anisms. 

The characterization of defect mechanisms in Laves 
phases is relevant to many physical properties. For 
example, the types of constitutional defects are im- 
portant in the operative diffusion mechanisms in Laves 
phases [35], and diffusion mechanisms contribute to 
the high temperature stability and mechanical strength 
of the material. In addition, the existence of vacancy 
defects may assist the synchroshear process in Laves 
phases [36], providing potential ductility to the inter- 
metallic phase. 

3.3.2. Alloying behavior 
The geometric rules affecting solubility that have 

been developed in this study apply both to binary and 
ternary alloying additions. In binary phases, an observed 
increase in the occurrence of phases that exhibit sol- 
ubility exists within specific size ratios. However, many 

of the phases that do not have a defined solubility 
range may indeed display a range of homogeneity under 
more careful studies. Many of the phase diagrams 
utilized in this analysis indicate dotted lines or use 
limited sources of data to define the phase fields. 

For ternary phases, the extension of the solubility 
trends observed in binary systems can be used to 
anticipate potential solubility changes owing to ternary 
element additions. The existing database on ternary 
Laves phase field extent is limited. Most systematic 
studies have focused on pseudobinary behavior where 
the ternary addition (i.e. C) to the AB2 structure is 
considered to substitute as (A,C)Bz or A(B,C)2. In this 
case the usual considerations for promoting extensive 
solubility (i.e low atomic size mismatch) may be applied 
to select a suitable solute. The approach is quite suc- 
cessful in phase-field extension except when the ternary 
solute addition yields a transition between Laves phase 
structures such as the classic example of MgNi2-MgCu2 
[12]. 

When the extension of the solubility range normal 
to the pseudobinary direction is considered, the results 
of the current analysis reveal other factors for solute 
selection. In order to allow for effective substitution, 
the relation DA>Dc>DB should be obeyed. In this 
way solute C atoms can substitute for both A and B 
atoms. This criterion has been demonstrated for NbCr=, 
where Ti additions nearly double the width of the C15 
phase field normal to the NbCr=-TiCr2 section [37]. 
Even more dramatic is the extension of the C15 HfV= 
phase field from about 1 at.% at 1000 °C to a range 
~ 20 at.% wide with the addition of 20 at.%Nb [38]. 
For both NbCr= and HfV= the atomic diameter ratio 
is below 1.225 and the ternary solute atom diameter 
is between the binary atom diameters. 

4. Summary 

Less than 25% of binary Laves phases exhibit sol- 
ubility, but the Laves phases that do exhibit a range 
of homogeneity can be described with distinct atom 
size arguments. The probability for increased equilib- 
rium (as well as metastable) solubility is markedly 
improved as the ratio of elemental metallic atom di- 
ameters approaches the ideal ratio of 1.225. This em- 
pirical trend for increased solubility is consistent with 
the geometric restrictions and requirements of space 
filling in the Laves metallic phases, and in this study, 
has been interpreted on a quantitative fashion with 
three main points. 

(1) The observation of a solubility range is increased 
approximately two to three times within specific DA/ 
DB ratios of 1.12-1.26 and 1.1-1.35 for the C14 and 
C15 phases, respectively. 
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(2) For the C15 phases, the diameter ratio bounds 
are defined physically by the intersection of linear 
regression lines for the A-B distance contraction with 
the A and B atom contractions. 

(3) Despite the different diameter ratio ranges, all 
Laves polytypes exhibit solubility between adjusted lat- 
tice contractions of 0-15%. The lattice-adjusted con- 
traction size rule developed in this present work ac- 
commodates the geometric consequences of atom size 
changes upon forming the intermetallic structure. 

The geometric arguments affecting solubility defined 
in this study provide a platform to interpret phase field 
width and potential defect mechanisms in Laves phases. 

dAa2 = [a2(1/3 + x +  3x 2) + c2(1/4 --z)211/2 

and 

dAB3 = [3a2(1/3 +X) 2 + C2(Z + 1/4)2] 1/2 

C15 bond distances 

The distances between the atoms in the C15 structure 
type are defined as follows: 

dA = (a~/3)/4 

dB= (av'2)/4 

and 
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Appendix 

C14 bond distances 

The respective A-A, B-B, and A-B distances are 
not all equidistant unless the axial ratio c/a is exactly 
~/(8/3) [6]. At c/a=~/(8/3), da/dB is equal to ~/(3/2). 
Following Berry and Raynor [6] for non-ideal axial 
ratios, two distances can be defined for both the A 
and B atoms. The A distances (A1 and A2) are 

dA1 = C(1/2-- 2Z) 

and 

dA2 = [a2/3 + (2cz)2] 1/2 

where z is a parameter which defines the relative position 
of A atoms above or below the basal plane. The value 
of z is dependent upon the specific alloy phase but is 
very near 1/16 [6]. The B distances (B1 and B2) can 
be defined as follows: 

dm= (1 + 3x)a 

and 

dB2 = (3x2a 2 + c2/16) lt2 

where x corresponds to the B atom position in the 
lattice with respect to the a lattice parameter and is 
approximately -1 /6  [6]. In addition to the A and B 
distances, the A-B distances (AB1, AB2, and AB3) 
can be defined as: 

dam = (a2/3 + c2z2) v2 
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